44 research outputs found

    How heat pumps and thermal energy storage can be used to manage wind power: A study of Ireland

    Get PDF
    Although energy for heating and cooling represents the largest proportion of demand, little progress towards meeting environmental targets has been achieved in these sectors. The recent rapid progress in integrating renewable energy into the electricity sector however, can help in decarbonising heat by electrification. This paper investigates the impacts and benefits of heat electrification in a wind dominated market by considering two options; with heat pumps, and with direct electric heating, both operated with energy storage. The Irish all-island electricity market is used as a case study. Modelling results reveal the significant potential of heat pump electrification, delivering at least two and three times less carbon emissions respectively, when compared with conventional options such as gas or oil for 20% of domestic sector of the All Ireland market. Heat electrification using direct, resistive heating systems is found to be the most carbon intensive method. Energy storage systems combined with heat pumps could deliver potentially significant benefits in terms of emissions reductions, efficient market operation and mitigating the impacts of variable renewable energy on baseload generation. The main barrier to heat electrification in the all island market is the absence of appropriate policy measures to support relevant technologies

    Design, Valuation and Comparison of Demand Response Strategies for Congestion Management

    Get PDF
    Decarbonisation of heat and transport will cause congestion issues in distribution networks. To avoid expensive network investments, demand flexibility is necessary to move loads from peak to off-peak periods. We provide a method and metric for assessing and selecting the optimal demand response strategy for a given network congestion scenario and applied it to a case study network in Coleraine, Northern Ireland. We proposed a Price Approximation/Mean Grouping strategy to deal with the issue of congestions occurring at the lowest-price period in real-time pricing schemes. The Mean Grouping strategy increased the average lowest-price hours from 1.32 to 3.76. We show that a three-cluster tariff is effective in solving medium congestion issues in Northern Ireland and could save consumers an average of £117/year on their heating bill. However, for networks with low headroom suffering from serious congestion issues, a smart control strategy is needed
    corecore